Sains Malaysiana 54(2)(2025): 389-401
http://doi.org/10.17576/jsm-2025-5402-06
Asplenium
nidus Menindas Virus Herpes Simplex pada Awal Fasa Jangkitan, Tindakan Virusidal dan Menurunkan Jangkitan Progeni
(Asplenium nidus Inhibit Herpes
Simplex Virus during the Early Infection Phase, Virucidal Action and Reduces Progeny Infection)
NAZLINA
IBRAHIM*, MARIYA MOHD TAHIR & NOREFRINA SHAFINAZ MD NOR
Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 30
April 2024/Accepted: 1 November 2024
Abstrak
Aktiviti antivirus ekstrak akuas akar Asplenium nidus atau paku langsuir telah diketahui namun cara tindakannya terhadap virus herpes simplex jenis 1 (HSV-1) belum dikenal pasti. Objektif kajian ini adalah menentukan kandungan sebatian dalam ekstrak akuas akar Asplenium nidus (EAAAN) serta tindakannya terhadap fasa awal jangkitan dan virus tersebut secara terus. Ekstrak akar A. nidus yang ditentukan melalui kromatografi cecair-spektrum jisim/spektrum jisim (LC-MS/MS) terdiri beberapa sebatian flavonoid iaitu metoksiflavon, rutin, katekin, kaempferol dan asid quinik. Penentuan rawatan EAAAN secara pasca jangkitan menunjukkan peratus pengurangan 75% plak pada kepekatan 12.5 mg/mL berbanding peratus pengurangan 60% melalui ujian pra-rawatan sel secara signifikan pada p<0.05. Seterusnya,
EAAAN dapat menghalang penjerapan virus dengan bersandarkan dos yang didedahkan dengan kepekatan yang berkesan terhadap 50% aktiviti antivirus (EC50) adalah pada kepekatan melebihi 1
mg/mL. Seawal 15 minit pasca jangkitan (p.j), EAAAN dapat menghalang penembusan virus ke dalam membran sel. Seterusnya asai virusidal menunjukkan EAAAN memberi kesan langsung terhadap zarah HSV-1 dan disahkan berlaku kerosakan sampul virus melalui pencerapan mikroskopi transmisi elektron. Melalui asai kebolehjangkitan progeni virus, berlaku penurunan titer virus progeni berbanding titer progeni virus dalam sel terjangkit tanpa rawatan. Sebagai kesimpulan, kajian ini mengesahkan ekstrak akuas akar A. nidus mengandungi beberapa sebatian flavonoid dengan potensi anti-HSV-1 melalui beberapa tindakan iaitu mengelak jangkitan virus melalui halangan penjerapan dan penembusan virus ke dalam sel iaitu pada fasa awal jangkitan virus, tindakan virusidal yang menyebabkan kerosakan kepada zarah virus dan mengurangkan bilangan progeni virus yang berdayajangkit.
Kata kunci: Akar Asplenium
nidus; halang penjerapan dan penembusan virus; sebatian flavonoid; virusidal; virus herpes simplex jenis-1
Abstract
Asplenium
nidus or Paku Langsuir root
aqueous extract (EAAAN) has been identified as having antiviral activity but
its mode of action against herpes simplex virus type 1 (HSV-1) is unknown. The
objective of this study was to determine the compounds present in EAAAN and the
mode of action against HSV-1 early replication stage and directly towards the
virus. Asplenium nidus root aqueous extract was determined by Liquid Chtomatography Mass Spectormetry/Mass
Spectrometry (LC-MS/MS) contains several flavonoid compounds namely methoxiflavone, rutin, catechin, kaempherol and quinik acid.
Post-infection treatment with EAAAN showed 75% plaque reduction percentage at
the concentration of 12.5 mg/mL compared to 60% reduction percentage when cells
were pretreated prior to infection significantly at
p<0.05. Subsequently, EAAAN was able to prevent virus attachment
to host cell in dose dependant manner with 50% virus activity concentration
(EC50) was more than 1 mg/mL. As early as 15 min post-infection,
EAAAN was able to prevent virus penetration into the cell membrane. Virucidal assay showed EAAAN had direct effect against
HSV-1 particles and virus envelope was damaged as confirmed by transmission
electron microscopy. In virus progeny yield assay, titer of virus progeny compared to titer of virus progeny in
infected cells without treatment decreased to 63.3%. As a conclusion, this
study confirms that A. nidus root aqueous extract contains several
flavonoid compounds with potential anti-HSV-1 activity with multiple mode of
action including interrupting early phase of virus infection by preventing
attachment and penetration into cells, virucidal activity by direct damage to virus particle and reduction in viral progeny
infectivity.
Keywords: Asplenium
nidus root; flavonoid compounds; herpes simplex virus type-1; mode of
actions; virusidal
REFERENCES
Anon. tth. Medicinal
Plants of Guam. University of Guam: College of Natural and Applied
Sciences. https://www.uog.edu/_resources/files/wptrc/Ebook_medicinal.pdf (24
April 2024).
Behbahani, M., Shanehsazzadeh,
M., Shokoohinia, Y. & Soltani,
M. 2013. Evaluation of anti-herpetic activity of methanol seed extract and
fractions of Securigera securidaca in vitro. Journal of Antiviral and
Antiretroviral 5(4): 72-76.
Benjamin, A. & Manickam, V. S. 2007.
Medicinal pteridophytes from the Western Ghats. Indian Journal of
Traditional Knowledge 6: 611-618.
Benniamin, A. 2011. Medicinal ferns of North Eastern India with special reference to
Arunachal Pradesh. Indian Journal of Traditional Knowledge 10(3):
516-522.
Carvalho, O.V., Botelho, C.V., Ferreira,
C.G., Ferreira, H.C., Santos, M.R., Diaz, M.A., Oliveira, T.T., Soares-Martins,
J.A., Almeida, M.R. & Silva Jr. A. 2013. In vitro inhibition of
canine distemper virus by flavonoids and phenolic acids: Implications of
structural differences for antiviral design. Research in Veterinary Science 95(2): 717-724.
CDER. 2006. Guidance for Industry
Antiviral Product Development-Conducting and Submitting Virology Studies to the
Agency. Center for Drug Evaluation and Research.
Chattopadhyay, D. & Naik, T.N. 2007.
Antivirals of ethnomedicinal origin: Structure-activity relationship and scope. Mini Reviews in Medicinal Chemistry 7(3): 275-301.
Cheng, H.Y., Lin, C.C. & Lin, T.C.
2002. Antiviral properties of prodelphinidin B-2 3’-O-gallate
from green tea leaf. Antiviral Chemistry and Chemotherapy 13(4):
223-229.
Cheng, H.Y., Yang, C.M., Lin, T.C., Shieh,
D.E. & Lin, C.C. 2006. ent-epiafzelechin-(4α→8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. Journal of Medical
Microbiology 55(2): 201-206.
Cheng, H.Y., Lin, T.C., Yang, C.M., Wang,
K.C., Lin, L.T. & Lin, C.C. 2004. Putranjivain a
from Euphorbia jolkini inhibits both virus
entry and late stage replication of herpes simplex virus 2 in vitro.
Antiviral Chemistry and Chemotherapy 53(4): 577-583.
Dargan, D.J. 1998. Anti- HSV of antiviral
agents. Dlm. Methods in Molecular Medicine, Vol 9
Herpes Simplex Virus Protocols, disunting oleh
Brown, S.M. & MacLean, A.R. New Jersey: Humana Press: hlm.
387-405.
De Clercq, E.
& Field, H.J. 2006. Antiviral prodrugs-the development of successful
prodrug strategies for antiviral chemotherapy. British Journal of
Pharmacology 147(1): 1-11.
De Clercq, E., Naesens, L., De Bolle, L., Schols, D., Zhang, Y. & Neyts,
J. 2001. Antiviral agents active against human herpesviruses HHV-6, HHV-T and
HHV-8. Review in Medical Virology 11(6): 381-395.
De Logu, A., Loy,
G., Pellerano, M.L., Bonsignore, L. & Schivo, M.L.
2000. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus
spread by Santolina insularis essential oil. Antiviral Research 48(3): 177-185.
De Maria, C., Trugo, L. & Mariz, M. 1999.
The content of individual caffeoylquinic acids in edible vegetables. Journal of Food
Composition and Analysis 12: 289-292.
Fayyad, A., Ibrahim, N.
& Yaacob, W.A. 2013. In vitro virucidal activity of hexane fraction of Marrubium vulgare against type 1 Herpes
simplex virus. American Journal of Drug Discovery and Development 3: 84-94.
Federspiel,
M., Fischer, R., Hennig, M., Mair, H.J., Oberhauser,
T. & Rimmler, G. 1999. Industrial synthesis of
the key precursor in the synthesis of the anti-influenza drug oseltamivir
phosphate (Ro 64–0796/002, GS-4104-02) ethyl
(3R,4S,5S)-4,5-epoxy-3-(1-ethyl-propoxy)-cyclohex-1-ene-1-carboxylate. Organic Process
Research and Development 3: 266-274.
Ganeshpurkar, A. & Saluja,
A.K. 2017. The pharmacological potential of rutin. Saudi
Pharmaceutical Journal 25: 149-164.
Garrett, R., Romanos,
M.T.V., Borges, R.M., Santos, M.G., Rocha, L. & da Silva, A.J.R. 2012.
Antiherpetic activity of a flavonoid fraction from Ocotea notata leaves. Revista Brasileira De Farmacognosia 22: 306-313.
Gnann Jr., J.W., Barton, N.H.
& Whitley, R.J. 1983. Acyclovir: Mechanism of action, pharmacokinetics,
safety and clinical applications. Pharmacotherapy 3(5): 275-383.
Hammami, S., Snène,
A., El Mokni, R., Faidi,
K., Falconieri, D., Dhaouadi,
H., Piras, A., Mighri, Z.
& Porcedda, S. 2016. Essential oil constituents
and antioxidant activity of Asplenium ferns, Journal of
Chromatographic Science 54(8): 1341–1345.
Iberahim, R., Md. Nor, N.S., Yaacob,
W.A. & Ibrahim, N. 2018. Eleusine indica inhibits early and late phases of herpes simplex
virus type 1 replication cycle and reduces progeny infectivity. Sains Malaysiana47(7):
1431-1438.
Ibrahim, A.K., Youssef, A.I., Arafa, A.S.
& Ahmed, S.A. 2013. Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Natural
Product Research 27(22): 2149-2153.
Ikeda, K., Tsujimoto, K., Uozaki, M., Nishide, M., Suzuki, Y. & Koyama, A.H. 2011. Inhibition
of multiplication of herpes simplex virus by caffeic acid. International
Journal of Molecular Medicine 2(28): 595-598.
Imperato, F. 1993. 3, 6, 8-Tri-C-xylosylapigenin
from Asplenium viviparum. Phytochemistry 33: 729-730.
Isaacs, C.E., Wen, G.Y., Xu,
W., Jia, J.H., Rohan, L., Corbo, C., Di Maggio, V.,
Jenkins, E.C. & Hillier, S. 2008. Epigallocatechin gallate inactivates
clinical isolates of herpes simplex virus. Antimicrobial Agents Chemotherapy 52(3): 962-970.
Jarial, R., Thakur, S., Sakinah,
M., Zularisam, A.W., Sharad, A., Kanwar, S.S. &
Singh, L. 2018. Potent anticancer, antioxidant and antibacterial activities of
isolated flavonoids from Asplenium nidus. Journal of King Saud University-Science 30:
185-192.
Jeong, H.J., Ryu, Y.B., Park, S.J., Kim, J.H.
& Kwon, H.J. 2008. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosearoots and their in vitro anti-influenza viral activities. Bioorganic and Medical Chemistry17: 6816-6823.
Kamng’ona, A., Moore, J.P., Lindsey, G. &
Brandt, W. 2011. Inhibition of HIV-1 and M-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia. Journal of Enzyme Inhibition and Medical Chemistry 26: 843-853.
Korovina, A.N., Gus’kova,
A.A., Skoblov, M.Y., Andronova,
V.L., Galegov, G.A., Kochetkov,
S.N., Kukhanova, M.K. & Skoblov,
Y.S. 2010. Mutations in the DNA polymerase and thymidine kinase genes of herpes
simplex virus clinical isolates resistant to antiherpetic drugs. Molecular
Biology 44(3): 431-438.
Koujah, L., Suryawanshi,
R.K. & Shukla, D. 2019. Pathological processes activated by herpes simplex
virus-1 (HSV−1) infection in the cornea. Cellular and Molecular Life
Sciences 76(3): 405-419.
Li, J., Huang,
H., Feng, M., Zhou, W. & Shi, X. 2008. In vitro and in vivo anti-hepatitis B virus activities of a plant extract from Geranium carolinianumL. Antiviral
Research 79: 114-120.
Lin, L.T., Chen, T.Y., Chung, C.Y., Noyce,
R.S., Grindley, T.B., McCormick, C., Lin, T.C., Wang,
G.H., Lin, C.C. & Richardson, C.D. 2011. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral
glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1
entry and cell-to-cell spread. Journal of Virology 85(9): 4386-4398.
Lobo, A-M., Agelidis,
A.M. & Shukla, D. 2019. The ocular surface pathogenesis of herpes simplex
keratitis: The host cell response and ocular surface sequelae to infection and
inflammation. The Ocular Surface 17: 40-49. doi:
10.1016/j.jtos.2018.10.002
Maideen, H., Che-Desa,
Z., Damanhuri, A., Latiff,
A. & Rusea, G. 2011. Kepelbagaian dan habitat pteridofit di Hutan Simpan Angsi, Negeri
Sembilan. Sains Malaysiana 40(12): 1341-1344.
Mettenleiter, T.C. 2002. Herpesvirus assembly and
egress. Journal of Virology 76(4): 1537-1547.
Mims, C., Dockrell,
M., Goering, R.V., Roitt, I., Wakelin, D. &
Zuckerman, M. 2004. Medical Microbiology. Spain: Elsevier Limited.
Nagai, T., Moriguchi,
R., Suzuki, Y., Tomimori, T. & Yamada, H. 1995.
Mode of action of the anti-influenza virus activity of plant flavonoid,
5,7,4’-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis. Antiviral Research 26(1):
11-25.
Ortega, J.T., Serrano, M.L., Suárez, A.I.,
Baptista, J., Pujol, F.H., Cavallaro, L.V., Campos, H.R. & Rangel, H.R.
2019. Antiviral activity of flavonoids present in
aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes Simplex Virus in
vitro. EXCLI Journal 18: 1037-1048.
Periferakis, A., Periferakis,
A-T., Troumpata, L., Periferakis,
K., Scheau, A-E., Savulescu-Fiedler,
I., Caruntu, A., Badarau,
I.A., Caruntu, C. & Scheau,
C. 2023. Kaempferol: A review of current evidence of its antiviral potential. International
Journal of Molecular Sciences 24(22): 16299.
Pimsuwan, S., Watcharinrat,
D., Jomsong, P., Kanchanaphusanon,
T. & Suksa-ard, U. 2020. The effects of watering
rates using the drip irrigation method on the root mass growth of bird’s nest
ferns. International Journal of GEOMATE 18(67): 15-20.
Rezende, C.O., Rigotto, C., Caneschi, W.,
Rezende, C.A.M., Le Hyaric, M. & Couri, M.R.C. 2014. Anti-HSV-1 and antioxidant activities
of dicaffeoyl and digalloyl esters of quinic acid. Biomedicine and
Preventive Nutrition 4: 35-38.
Ripim, N.S.M., Fazil,
N, Ibrahim, K, Bahtiar, A, Wai, C.Y., Ibrahim, N.,
Nor M. 2018. Antiviral properties of Orthosiphon stamineus aqueous extract in Herpes Simplex Virus Type 1 infected cells. Sains Malaysiana 47(8): 1725-1730.
Saddi, M., Sanna, A., Cottiglia, F., Chisu, L., Casu, L., Bonsignore, L. & De Logu, A. 2007. Antiherpesvirus activity of Artemisia arborescens essential
oils and inhibition of lateral diffusion in Vero cells. Annals of Clinical
Microbiology and Antimicrobials 6: 10.
Shahat, A.A., Cos, P., De Bruyne, T., Apers, S., Hammouda, F.M.,
Ismail, S.I., Azzam, S., Claeys, M., Goovaerts, E., Pieters, L., Van den Berghe,
D. & Vlietinck, A.J. 2002. Antiviral and
antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica. Planta Medica 68: 539-541.
Sheng, Y., Åkesson,
C., Holmgren, K., Bryngelsson, C., Giamapa, V. & Pero, R.W. 2005. An active ingredient of
Cat’s Claw water extracts: Identification and efficacy of quinic acid. Journal of Ethnopharmacology 96(3): 577-584.
Šudomová, M. & Hassan, S.T.S. 2023. Flavonoids
with anti-Herpes Simplex Virus properties: Deciphering their mechanisms in
disrupting the viral life cycle. Viruses 15: 2340.
Suga, S., Yoshikawa, T., Yazaki, T., Ozaki,
T. & Asano, Y. 1996. Dose-dependent effects of oral acyclovir in the
incubation period of varicella. Acta Paediatrica 85(12): 1418-1421.
Tahir, M.M., Ibrahim, N. & Yaacob, W.A. 2014. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica. AIP Conference Proceedings 1614(549): 549-552.
Tahir, M.M., Hassan, N.S., Dyari, H.R.E., Yaacob, W.A. &
Ibrahim, N. 2017. Phytochemistry,
antibacterial and antiviral effects of the fractions of Asplenium nidus leaves
aqueous extract. Malaysian Applied Biology 46(1): 207-212.
Tahir, M.M., Yip, C.W., Yaacob,
W.A. & Ibrahim, N. 2015. Antibacterial, cytotoxicity and antiviral
activities of Asplenium nidus. Journal of Chemical and Pharmaceutical
Research 7(7): 440-444.
Urmenyi, F.G., Saraiva, G.D., Casanova, L.M.,
Matos, A.D., De Magalhães Camargo, L.M., Romanos, M.T. & Costa, S.S. 2016. Anti-HSV-1 and HSV-2
flavonoids and a new kaempferol triglycoside from the
medicinal plant Kalanchoe daigremontiana. Journal of Chemical
Biodiversity 13(12): 1707-1714.
Van Hoof, L., Dirk, A., Berghe,
V., George, M., Hatfield, M. & Vlietinck, A.J.
1984. Plant antiviral agents; V.1 3-methoxyflavones as potent inhibitors of
viral-induced block of cell synthesis. Planta Medica 50(6): 513-517.
Wang, G.F., Shi, L.P., Ren, Y.D., Liu,
Q.F., Liu, H.F., Zhang, R.J., Li, Z., Zhu, F.H., He, P.L., Tang, W., Tao, P.Z.,
Li, C., Zhao, W.M.& Zuo, J.P. 2009.
Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Research 83(2):
186-190.
Zhang,T., Wu,Z., Du,J., Hu,Y., Liu, L., Yang, F.
& Jin Q. 2012. Anti-Japanese Encephalitis viral
effects of kaempferol and daidzin and their
RNA-binding characteristics. PLoS ONE 7(1): e30259.
*Corresponding author; email:
nazlina@ukm.edu.my