Sains Malaysiana 54(2)(2025): 389-401

http://doi.org/10.17576/jsm-2025-5402-06

 

Asplenium nidus Menindas Virus Herpes Simplex pada Awal Fasa Jangkitan, Tindakan Virusidal dan Menurunkan Jangkitan Progeni

(Asplenium nidus Inhibit Herpes Simplex Virus during the Early Infection Phase, Virucidal Action and Reduces Progeny Infection)

 

NAZLINA IBRAHIM*, MARIYA MOHD TAHIR & NOREFRINA SHAFINAZ MD NOR

 

Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 30 April 2024/Accepted: 1 November 2024

 

Abstrak

Aktiviti antivirus ekstrak akuas akar Asplenium nidus atau paku langsuir telah diketahui namun cara tindakannya terhadap virus herpes simplex jenis 1 (HSV-1) belum dikenal pasti. Objektif kajian ini adalah menentukan kandungan sebatian dalam ekstrak akuas akar Asplenium nidus (EAAAN) serta tindakannya terhadap fasa awal jangkitan dan virus tersebut secara terus. Ekstrak akar A. nidus yang ditentukan melalui kromatografi cecair-spektrum jisim/spektrum jisim (LC-MS/MS) terdiri beberapa sebatian flavonoid iaitu metoksiflavon, rutin, katekin, kaempferol dan asid quinik. Penentuan rawatan EAAAN secara pasca jangkitan menunjukkan peratus pengurangan 75% plak pada kepekatan 12.5 mg/mL berbanding peratus pengurangan 60% melalui ujian pra-rawatan sel secara signifikan pada p<0.05. Seterusnya, EAAAN dapat menghalang penjerapan virus dengan bersandarkan dos yang didedahkan dengan kepekatan yang berkesan terhadap 50% aktiviti antivirus (EC50) adalah pada kepekatan melebihi 1 mg/mL. Seawal 15 minit pasca jangkitan (p.j), EAAAN dapat menghalang penembusan virus ke dalam membran sel. Seterusnya asai virusidal menunjukkan EAAAN memberi kesan langsung terhadap zarah HSV-1 dan disahkan berlaku kerosakan sampul virus melalui pencerapan mikroskopi transmisi elektron. Melalui asai kebolehjangkitan progeni virus, berlaku penurunan titer virus progeni berbanding titer progeni virus dalam sel terjangkit tanpa rawatan. Sebagai kesimpulan, kajian ini mengesahkan ekstrak akuas akar A. nidus mengandungi beberapa sebatian flavonoid dengan potensi anti-HSV-1 melalui beberapa tindakan iaitu mengelak jangkitan virus melalui halangan penjerapan dan penembusan virus ke dalam sel iaitu pada fasa awal jangkitan virus, tindakan virusidal yang menyebabkan kerosakan kepada zarah virus dan mengurangkan bilangan progeni virus yang berdayajangkit.

 

Kata kunci: Akar Asplenium nidus; halang penjerapan dan penembusan virus; sebatian flavonoid; virusidal; virus herpes simplex jenis-1

 

Abstract

Asplenium nidus or Paku Langsuir root aqueous extract (EAAAN) has been identified as having antiviral activity but its mode of action against herpes simplex virus type 1 (HSV-1) is unknown. The objective of this study was to determine the compounds present in EAAAN and the mode of action against HSV-1 early replication stage and directly towards the virus. Asplenium nidus root aqueous extract was determined by Liquid Chtomatography Mass Spectormetry/Mass Spectrometry (LC-MS/MS) contains several flavonoid compounds namely methoxiflavone, rutin, catechin, kaempherol and quinik acid. Post-infection treatment with EAAAN showed 75% plaque reduction percentage at the concentration of 12.5 mg/mL compared to 60% reduction percentage when cells were pretreated prior to infection significantly at p<0.05. Subsequently, EAAAN was able to prevent virus attachment to host cell in dose dependant manner with 50% virus activity concentration (EC50) was more than 1 mg/mL. As early as 15 min post-infection, EAAAN was able to prevent virus penetration into the cell membrane. Virucidal assay showed EAAAN had direct effect against HSV-1 particles and virus envelope was damaged as confirmed by transmission electron microscopy. In virus progeny yield assay, titer of virus progeny compared to titer of virus progeny in infected cells without treatment decreased to 63.3%. As a conclusion, this study confirms that A. nidus root aqueous extract contains several flavonoid compounds with potential anti-HSV-1 activity with multiple mode of action including interrupting early phase of virus infection by preventing attachment and penetration into cells, virucidal activity by direct damage to virus particle and reduction in viral progeny infectivity.

 

Keywords: Asplenium nidus root; flavonoid compounds; herpes simplex virus type-1; mode of actions; virusidal

 

REFERENCES

Anon. tth. Medicinal Plants of Guam. University of Guam: College of Natural and Applied Sciences. https://www.uog.edu/_resources/files/wptrc/Ebook_medicinal.pdf (24 April 2024).

Behbahani, M., Shanehsazzadeh, M., Shokoohinia, Y. & Soltani, M. 2013. Evaluation of anti-herpetic activity of methanol seed extract and fractions of Securigera securidaca in vitro. Journal of Antiviral and Antiretroviral 5(4): 72-76.

Benjamin, A. & Manickam, V. S. 2007. Medicinal pteridophytes from the Western Ghats. Indian Journal of Traditional Knowledge 6: 611-618.

Benniamin, A. 2011.  Medicinal ferns of North Eastern India with special reference to Arunachal Pradesh. Indian Journal of Traditional Knowledge 10(3): 516-522.

Carvalho, O.V., Botelho, C.V., Ferreira, C.G., Ferreira, H.C., Santos, M.R., Diaz, M.A., Oliveira, T.T., Soares-Martins, J.A., Almeida, M.R. & Silva Jr. A. 2013. In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: Implications of structural differences for antiviral design. Research in Veterinary Science 95(2): 717-724.

CDER. 2006. Guidance for Industry Antiviral Product Development-Conducting and Submitting Virology Studies to the Agency. Center for Drug Evaluation and Research.

Chattopadhyay, D. & Naik, T.N. 2007. Antivirals of ethnomedicinal origin: Structure-activity relationship and scope. Mini Reviews in Medicinal Chemistry 7(3): 275-301.

Cheng, H.Y., Lin, C.C. & Lin, T.C. 2002. Antiviral properties of prodelphinidin B-2 3’-O-gallate from green tea leaf. Antiviral Chemistry and Chemotherapy 13(4): 223-229.

Cheng, H.Y., Yang, C.M., Lin, T.C., Shieh, D.E. & Lin, C.C. 2006. ent-epiafzelechin-(4α→8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. Journal of Medical Microbiology 55(2): 201-206.

Cheng, H.Y., Lin, T.C., Yang, C.M., Wang, K.C., Lin, L.T. & Lin, C.C. 2004. Putranjivain a from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus 2 in vitro. Antiviral Chemistry and Chemotherapy 53(4): 577-583.

Dargan, D.J. 1998. Anti- HSV of antiviral agents. Dlm. Methods in Molecular Medicine, Vol 9 Herpes Simplex Virus Protocols, disunting oleh Brown, S.M. & MacLean, A.R. New Jersey: Humana Press: hlm. 387-405.

De Clercq, E. & Field, H.J. 2006. Antiviral prodrugs-the development of successful prodrug strategies for antiviral chemotherapy. British Journal of Pharmacology 147(1): 1-11.

De Clercq, E., Naesens, L., De Bolle, L., Schols, D., Zhang, Y. & Neyts, J. 2001. Antiviral agents active against human herpesviruses HHV-6, HHV-T and HHV-8. Review in Medical Virology 11(6): 381-395.

De Logu, A., Loy, G., Pellerano, M.L., Bonsignore, L. & Schivo, M.L. 2000. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antiviral Research 48(3): 177-185.

De Maria, C., Trugo, L. & Mariz, M. 1999. The content of individual caffeoylquinic acids in edible vegetables. Journal of Food Composition and Analysis 12: 289-292.

Fayyad, A., Ibrahim, N. & Yaacob, W.A. 2013. In vitro virucidal activity of hexane fraction of Marrubium vulgare against type 1 Herpes simplex virus. American Journal of Drug Discovery and Development 3: 84-94.

Federspiel, M., Fischer, R., Hennig, M., Mair, H.J., Oberhauser, T. & Rimmler, G. 1999. Industrial synthesis of the key precursor in the synthesis of the anti-influenza drug oseltamivir phosphate (Ro 64–0796/002, GS-4104-02) ethyl (3R,4S,5S)-4,5-epoxy-3-(1-ethyl-propoxy)-cyclohex-1-ene-1-carboxylate. Organic Process Research and Development 3: 266-274.

Ganeshpurkar, A. & Saluja, A.K. 2017. The pharmacological potential of rutin. Saudi Pharmaceutical Journal 25: 149-164.

Garrett, R., Romanos, M.T.V., Borges, R.M., Santos, M.G., Rocha, L. & da Silva, A.J.R. 2012. Antiherpetic activity of a flavonoid fraction from Ocotea notata leaves. Revista Brasileira De Farmacognosia 22: 306-313.

Gnann Jr., J.W., Barton, N.H. & Whitley, R.J. 1983. Acyclovir: Mechanism of action, pharmacokinetics, safety and clinical applications. Pharmacotherapy 3(5): 275-383.

Hammami, S., Snène, A., El Mokni, R., Faidi, K., Falconieri, D., Dhaouadi, H.,  Piras, A., Mighri, Z. & Porcedda, S. 2016. Essential oil constituents and antioxidant activity of Asplenium ferns, Journal of Chromatographic Science 54(8): 1341–1345.

Iberahim, R., Md. Nor, N.S., Yaacob, W.A. & Ibrahim, N. 2018. Eleusine indica inhibits early and late phases of herpes simplex virus type 1 replication cycle and reduces progeny infectivity. Sains Malaysiana47(7): 1431-1438.

Ibrahim, A.K., Youssef, A.I., Arafa, A.S. & Ahmed, S.A. 2013. Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Natural Product Research 27(22): 2149-2153.

Ikeda, K., Tsujimoto, K., Uozaki, M., Nishide, M., Suzuki, Y. & Koyama, A.H. 2011. Inhibition of multiplication of herpes simplex virus by caffeic acid. International Journal of Molecular Medicine 2(28): 595-598.

Imperato, F. 1993. 3, 6, 8-Tri-C-xylosylapigenin from Asplenium viviparum. Phytochemistry 33: 729-730.

Isaacs, C.E., Wen, G.Y., Xu, W., Jia, J.H., Rohan, L., Corbo, C., Di Maggio, V., Jenkins, E.C. & Hillier, S. 2008. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrobial Agents Chemotherapy 52(3): 962-970.

Jarial, R., Thakur, S., Sakinah, M., Zularisam, A.W., Sharad, A., Kanwar, S.S. & Singh, L. 2018. Potent anticancer, antioxidant and antibacterial activities of isolated flavonoids from Asplenium nidus. Journal of King Saud University-Science 30: 185-192.

Jeong, H.J., Ryu, Y.B., Park, S.J., Kim, J.H. & Kwon, H.J. 2008. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosearoots and their in vitro anti-influenza viral activities. Bioorganic and Medical Chemistry17: 6816-6823.

Kamng’ona, A., Moore, J.P., Lindsey, G. & Brandt, W. 2011. Inhibition of HIV-1 and M-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia. Journal of Enzyme Inhibition and Medical Chemistry 26: 843-853.

Korovina, A.N., Gus’kova, A.A., Skoblov, M.Y., Andronova, V.L., Galegov, G.A., Kochetkov, S.N., Kukhanova, M.K. & Skoblov, Y.S. 2010. Mutations in the DNA polymerase and thymidine kinase genes of herpes simplex virus clinical isolates resistant to antiherpetic drugs. Molecular Biology 44(3): 431-438.

Koujah, L., Suryawanshi, R.K. & Shukla, D. 2019. Pathological processes activated by herpes simplex virus-1 (HSV−1) infection in the cornea. Cellular and Molecular Life Sciences 76(3): 405-419.

Li, J., Huang, H., Feng, M., Zhou, W. & Shi, X. 2008. In vitro and in vivo anti-hepatitis B virus activities of a plant extract from Geranium carolinianumL. Antiviral Research 79: 114-120.

Lin, L.T., Chen, T.Y., Chung, C.Y., Noyce, R.S., Grindley, T.B., McCormick, C., Lin, T.C., Wang, G.H., Lin, C.C. & Richardson, C.D. 2011. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. Journal of Virology 85(9): 4386-4398.

Lobo, A-M., Agelidis, A.M. & Shukla, D. 2019. The ocular surface pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. The Ocular Surface 17: 40-49. doi: 10.1016/j.jtos.2018.10.002

Maideen, H., Che-Desa, Z., Damanhuri, A., Latiff, A. & Rusea, G. 2011. Kepelbagaian dan habitat pteridofit di Hutan Simpan Angsi, Negeri Sembilan. Sains Malaysiana 40(12): 1341-1344.

Mettenleiter, T.C. 2002. Herpesvirus assembly and egress. Journal of Virology 76(4): 1537-1547.

Mims, C., Dockrell, M., Goering, R.V., Roitt, I., Wakelin, D. & Zuckerman, M. 2004. Medical Microbiology. Spain: Elsevier Limited.

Nagai, T., Moriguchi, R., Suzuki, Y., Tomimori, T. & Yamada, H. 1995. Mode of action of the anti-influenza virus activity of plant flavonoid, 5,7,4’-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis. Antiviral Research 26(1): 11-25.

Ortega, J.T., Serrano, M.L., Suárez, A.I., Baptista, J., Pujol, F.H., Cavallaro, L.V., Campos, H.R. & Rangel, H.R. 2019. Antiviral activity of flavonoids present in aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes Simplex Virus in vitro. EXCLI Journal 18: 1037-1048.

Periferakis, A., Periferakis, A-T., Troumpata, L., Periferakis, K., Scheau, A-E., Savulescu-Fiedler, I., Caruntu, A., Badarau, I.A., Caruntu, C. & Scheau, C. 2023. Kaempferol: A review of current evidence of its antiviral potential. International Journal of Molecular Sciences 24(22): 16299.

Pimsuwan, S., Watcharinrat, D., Jomsong, P., Kanchanaphusanon, T. & Suksa-ard, U. 2020. The effects of watering rates using the drip irrigation method on the root mass growth of bird’s nest ferns. International Journal of GEOMATE 18(67): 15-20.

Rezende, C.O., Rigotto, C., Caneschi, W., Rezende, C.A.M., Le Hyaric, M. & Couri, M.R.C. 2014. Anti-HSV-1 and antioxidant activities of dicaffeoyl and digalloyl esters of quinic acid. Biomedicine and Preventive Nutrition 4: 35-38.

Ripim, N.S.M., Fazil, N, Ibrahim, K, Bahtiar, A, Wai, C.Y., Ibrahim, N., Nor M. 2018. Antiviral properties of Orthosiphon stamineus aqueous extract in Herpes Simplex Virus Type 1 infected cells. Sains Malaysiana 47(8): 1725-1730.

Saddi, M., Sanna, A., Cottiglia, F., Chisu, L., Casu, L., Bonsignore, L. & De Logu, A. 2007. Antiherpesvirus activity of Artemisia arborescens essential oils and inhibition of lateral diffusion in Vero cells. Annals of Clinical Microbiology and Antimicrobials 6: 10.

Shahat, A.A., Cos, P., De Bruyne, T., Apers, S., Hammouda, F.M., Ismail, S.I., Azzam, S., Claeys, M., Goovaerts, E., Pieters, L., Van den Berghe, D. & Vlietinck, A.J. 2002. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica. Planta Medica 68: 539-541.

Sheng, Y., Åkesson, C., Holmgren, K., Bryngelsson, C., Giamapa, V. & Pero, R.W. 2005. An active ingredient of Cat’s Claw water extracts: Identification and efficacy of quinic acid. Journal of Ethnopharmacology 96(3): 577-584.

Šudomová, M. & Hassan, S.T.S. 2023. Flavonoids with anti-Herpes Simplex Virus properties: Deciphering their mechanisms in disrupting the viral life cycle. Viruses 15: 2340.

Suga, S., Yoshikawa, T., Yazaki, T., Ozaki, T. & Asano, Y. 1996. Dose-dependent effects of oral acyclovir in the incubation period of varicella. Acta Paediatrica 85(12): 1418-1421.

Tahir, M.M., Ibrahim, N. & Yaacob, W.A. 2014. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica. AIP Conference Proceedings 1614(549): 549-552.

Tahir, M.M., Hassan, N.S., Dyari, H.R.E., Yaacob, W.A. & Ibrahim, N. 2017. Phytochemistry, antibacterial and antiviral effects of the fractions of Asplenium nidus leaves aqueous extract. Malaysian Applied Biology 46(1): 207-212.

Tahir, M.M., Yip, C.W., Yaacob, W.A. & Ibrahim, N. 2015. Antibacterial, cytotoxicity and antiviral activities of Asplenium nidus. Journal of Chemical and Pharmaceutical Research 7(7): 440-444.

Urmenyi, F.G., Saraiva, G.D., Casanova, L.M., Matos, A.D., De Magalhães Camargo, L.M., Romanos, M.T. & Costa, S.S. 2016. Anti-HSV-1 and HSV-2 flavonoids and a new kaempferol triglycoside from the medicinal plant Kalanchoe daigremontiana. Journal of Chemical Biodiversity 13(12): 1707-1714.

Van Hoof, L., Dirk, A., Berghe, V., George, M., Hatfield, M. & Vlietinck, A.J. 1984. Plant antiviral agents; V.1 3-methoxyflavones as potent inhibitors of viral-induced block of cell synthesis. Planta Medica 50(6): 513-517.

Wang, G.F., Shi, L.P., Ren, Y.D., Liu, Q.F., Liu, H.F., Zhang, R.J., Li, Z., Zhu, F.H., He, P.L., Tang, W., Tao, P.Z., Li, C., Zhao, W.M.& Zuo, J.P. 2009. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Research 83(2): 186-190.

Zhang,T., Wu,Z., Du,J., Hu,Y., Liu, L., Yang, F. & Jin Q. 2012. Anti-Japanese Encephalitis viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS ONE 7(1): e30259.

 

*Corresponding author; email: nazlina@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next